If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v^2-16v-23=0
a = 1; b = -16; c = -23;
Δ = b2-4ac
Δ = -162-4·1·(-23)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{87}}{2*1}=\frac{16-2\sqrt{87}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{87}}{2*1}=\frac{16+2\sqrt{87}}{2} $
| -3x+10=3x+8 | | 6(1-3x)-2x=26 | | -2y+7=3y-3 | | -179=-67-14x | | 6.5g+2=1.5g+22 | | 3(7+-1.5y)-4y=4 | | 12x-8=-4x+8 | | 2x+3=3x-22 | | 6n+2(3n+4)=32 | | 4=6+x/4 | | 90=9(s+6) | | 4x-37=2x-3 | | (3x+6)+(8x-4)=90 | | 3m-10=-100 | | d-7/2=1 | | -5(2x+8)=-100 | | -3y-2=19 | | 7/2x+1/2x=41/2 | | 0.30k+29=59.60 | | 6(v-3)=0 | | 4x+7x+8x-2x=84 | | b-15=-13 | | -54+4x=34 | | 114=8x+50 | | 18=12+d2 | | (4+x)/(x+7)=5/4 | | (x+5)^4/3=4 | | 8+6p+4=-6 | | 9+3x+5=4 | | (4+x)÷(x+7)=5÷4 | | 45=4p+13 | | v-2.8=7.16 |